- Choose a tag to compare
Version 2.0.9. Installing WatchMe with MacUpdate Desktop. If nothing happens, you might not have MacUpdate Desktop installed. Apr 18, 2018 WatchMe is a small macOS application designed to help you find and download episodes from TV series, with minimal effort. The app finds multiple online sources for each episode, and can also convert the media content to MP4, MOV, or MPEG file formats.
- Choose a tag to compare
Watch Me 2.0.9 Online
fchollet released this
Areas of improvement
- RNN improvements:
- Refactor RNN layers to rely on atomic RNN cells. This makes the creation of custom RNN very simple and user-friendly, via the
RNNbase class. - Add ability to create new RNN cells by stacking a list of cells, allowing for efficient stacked RNNs.
- Add
CuDNNLSTMandCuDNNGRUlayers, backend by NVIDIA's cuDNN library for fast GPU training & inference. - Add RNN Sequence-to-sequence example script.
- Add
constantsargument inRNN'scallmethod, making RNN attention easier to implement.
- Refactor RNN layers to rely on atomic RNN cells. This makes the creation of custom RNN very simple and user-friendly, via the
- Easier multi-GPU data parallelism via
keras.utils.multi_gpu_model. - Bug fixes & performance improvements (in particular, native support for NCHW data layout in TensorFlow).
- Documentation improvements and examples improvements.
API changes

- Add 'fashion mnist' dataset as
keras.datasets.fashion_mnist.load_data() - Add
Minimummerge layer askeras.layers.Minimum(class) andkeras.layers.minimum(inputs)(function) - Add
InceptionResNetV2tokeras.applications. - Support
boolvariables in TensorFlow backend. - Add
dilationtoSeparableConv2D. - Add support for dynamic
noise_shapeinDropout - Add
keras.layers.RNN()base class for batch-level RNNs (used to implement custom RNN layers from a cell class). - Add
keras.layers.StackedRNNCells()layer wrapper, used to stack a list of RNN cells into a single cell. - Add
CuDNNLSTMandCuDNNGRUlayers. - Deprecate
implementation=0for RNN layers. - The Keras progbar now reports time taken for each past epoch, and average time per step.
- Add option to specific resampling method in
keras.preprocessing.image.load_img(). - Add
keras.utils.multi_gpu_modelfor easy multi-GPU data parallelism. - Add
constantsargument inRNN'scallmethod, used to pass a list of constant tensors to the underlying RNN cell.
Breaking changes
- Implementation change in
keras.losses.cosine_proximityresults in a different (correct) scaling behavior. - Implementation change for samplewise normalization in
ImageDataGeneratorresults in a different normalization behavior.
Credits
Thanks to our 59 contributors whose commits are featured in this release!
Watch Me 2015
@alok, @Danielhiversen, @Dref360, @HelgeS, @JakeBecker, @MPiecuch, @MartinXPN, @RitwikGupta, @TimZaman, @adammenges, @aeftimia, @ahojnnes, @akshaychawla, @alanyee, @aldenks, @andhus, @apbard, @aronj, @bangbangbear, @bchu, @bdwyer2, @bzamecnik, @cclauss, @colllin, @datumbox, @deltheil, @dhaval067, @durana, @ericwu09, @facaiy, @farizrahman4u, @fchollet, @flomlo, @fran6co, @grzesir, @hgaiser, @icyblade, @jsaporta, @julienr, @jussihuotari, @kashif, @lucashu1, @mangerlahn, @myutwo150, @nicolewhite, @noahstier, @nzw0301, @olalonde, @ozabluda, @patrikerdes, @podhrmic, @qin, @raelg, @roatienza, @shadiakiki1986, @smgt, @souptc, @taehoonlee, @y0z
Comments are closed.